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ANALYSIS OF THE FEEDBACK SYSTEM IN A NONINTRUSIVE DYNAMIC FLOWMETER

FOR MEASURING POGO OSCILLATIONS

By William G. Chapin

Langley Research Center

SUMMARY

Equations are developed which describe the closed 
loop feedback system

operation of a proposed ultrasonic, dynamic, 
nonintrusive flo meter whose

design is based on a constant phase, voltage 
controlled, frequency feedback

concept. These equations are based on linear feedback system 
theory. The

time constant of a low pass filter is taken into 
account. The equations

show that the larger the open loop gain, the smaller 
the error due to

fluctuations in the speed of sound and the smaller the 
effective time

constant.

INTRODUCTION

Many liquid-propellant rocket vehicles have experienced longitudinal

vibrations because of an instability arising from interaction 
of the vehicle

structure with the propulsion system. These vibrations, nicknamed "Pogo"

after the jumping stick, have occurred principally in 
the first longitudinal

structural mode during the first stage of a launch vehicle. The vibration

begins spontaneously, intensifies, and then dies away - typically in a

period of 10 to 40 seconds.

In the interest of predicting whether or not the Space Shuttle 
Vehicle

will "Pogo" it is necessary to measure the dynamic flow component in the

LOX fuel lines during ground testing of t3ie spaco chuttle main engine. This

measurement should identify fluctuations in flow velocity 
to 100 Hz over a

range +1.5 m/sec to +15 m/sec (5 ft/sec to +50 ft/sec) with a resolution

of .003 m/sec (.01 ft/sec).

Since no flowmeter was available which could meet the stringent

requirements of this measurement, one had to be developed under an R&D design
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study contract as reported in NASA CR-12313 (ref. 1). This flowmeter

operates on the principle of propagating two continuous ultrasonic sound

waves (one upstream and one downstream) through the flowing medium by means

of externally mounted transducer-receivers, (fig. 1). This flowmeter

apparently meets the requirements of nonintrusiveness, fast response, high

accuracy and high resolution, and was designed to measure flow rates in

cryogenic liquids and water. The heart of this flowmeter is its closed

loop feedback system which represents the state-of-the-art in flow technology.

Reference 1 contains an analysis of the flowmeter design concept, along

with a block diagram of the electronics and some circuit and mechanical

details; however, reference 1 conta ins no analysis of the closed loop feed-

back system operation. It was concluded that an analysis of the closed loop

feedback system operation was needed to determine how or to what extent the

system would actually produce the behavior described in the reference 1

design analysis. Such an understanding was considered necessary to the

effective evaluation of the design concept. For example, in reference 1,

it is shown that the propagation of both an upstream wave and a downstream

wave would, by means of a cancellation process, eliminate a measurement

error due to fluctuations in the speed of sound in the flow medium. The

question arose as to whether complete cancellation or only partial cancella-

tion is an inherent feature of the actual system. It was realized that a

mathematical model of the closed loop feedback system would be very helpful

in answering this question.

In this report, such a model is developed. It is based on classical

linear feedback system theory and small fluctuations about a static

operating point.

First, the pertinent aspects of the analysis of reference 1 are

presented. It shows that the simultaneous transmission of a downstream and

an upstream wave results, ideally, in the elimination of fluid velocity

measurement errors due to fluctuations in the speed of sound. Then the

analysis of the closed loop servo operation is presented with appropriate

servo block diagrams depicting the transfer functions and supporting

equations.
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SYMBOLS

A amplitude of the voltage controlled oscillator (VCO) output

c velocity of sound

D tube diameter

fl' f2 frequencies of downstream and upstream systems, respectively

f0, f 20 fixed components of the frequencies of the downstream and 
upstream

10 f2 0  systems, respectively

F1 , F2  variable components of the frequencies of the downstream and

upstream systems, respectively

K gain constant of dc amplifiers

Kf gain constant of low pass filters

K gain constant of multipliers
m

K gain constant of transmitter-receivers

K1 , K2  gain constants relating the voltage to the variable frequency

component of the VCO units for the dornstream and upstream

systems, respectively

K3 , K4, K5, K6  gain constants of the various flox-meter components as

shown in figure 3.

M, N integers

out output at a block in figure 3, where n represents the number

of the block.

S Laplace operator

t time

T time constant of low pass filters

v velocity of fluid

V1 V2  instantaneous outputs of the amplifiers of the downstream and

upstream systems, respectively

V f, V instantaneous outputs of the low pass filters of the downstream
Vfl f2 and upstream systems, respectively



Vml , V instantaneous outputs of the multipliers of the downstream and
l m2 upstream systems, respectively

Vml component of Vml assumed not to be completely attenuated by the

low pass filter

Vm2 component of V 2 assumed not to be completely attenuated by the

low pass filter

e acute angle between the direction of wave propagation and the

wall of the tube (see fig. 1)

TV 2, phase lags between the transmitter and receiver for downstream

and upstream systemsl respectively

A wave length of the transmitted ultrasonic wave for the downstream

system

subscript s static operating values about which systems operate dynamically

subscript d dynamic values about the static operating values

superbar, , Laplace transform of the time domain dynamic component of a

over a variable
variable
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GENERAL THEORY AID DESCRIPTION OF

PROPOSED SYSTEM

The basic purpose of the proposed nonintrusive dynamic flowmeter

(ref. 1) is to measure the dynamic flow velocity of 
liquids in a tube. In

figure 1 each transducer contains a transmitter 
and a receiver. The trans-

mitter of transducer 1 and the receiver of transducer 2 are called 
the

"downstream system." The transmitter of transducer 2 and the receiver of

transducer 1 are called the "upstream system." Each of the transmitters

is driven by a digital frequency synthesizer. Pertinent aspects.

of the analysis of the flowmeter design concept contained in 
reference 1

are summarized next. The important outcome of the analysis is that with

suitable adjustment of some system parameters, the difference in voltage

outputs of the two systems can be made a function of axial 
fluid velocity

and independent of the speed of sound. This measurement concept represents

the ideal behavior to be attained as closely as possible by the 
actual

system.

Consider a wave of frequency fl propagated downstream from the

transmitter of transducer 1 to the receiver of transducer 2 at an angle 6

with the wall of the tube. The phase of the wave at 2 is

2rD 1

1 sin X

also,

c + v cos e
fl

If these equations are combined, there is obtained

27Dfl (1)

'1 (c + v cos 6) sin e



In the anticipated applications, it has been estimated that with a

single frequency system, a change in pressure of only 10-3 atmospheres 
would

cause a varia-.tion i t he .,, o unuh h- the esol-tion of cSificundtin

of .003 m/sec would be exceeded. Pressure variations are very likely to

be considerably more than this, not to mention other sources of variation

in the speed of sound. To minimize the effect of changing sound speed, a wave

is also propagated upstream from the transmitter of transducer 2 to the

receiver of transducer 1. Here

27TDf2

'2 (c - v cos e) sin"

For the downstream system, an increase in fluid velocity tends to

decrease the phase angle, while for the upstream system, such an increase

tends to increase the phase angle. On the other hand, for each system, an

increase in the speed of sound tends to decrease the phase angle. The

frequency fl consists of a fixed frequency f10 plus a voltage controlled

frequency Fl. The latter F1 is caused to vary so that

= (2N - 1) (3)

This is an idealized relationship, since, as is shoiwn later at least a

small deviation of $1 from (2N-1) is an inherent feature of the servo

system.

Similarly, f2  consists of a fied component, f2 0 plus a variable

component F2  such that, ideally,

= (2M - 1) (4)

The frequency fl0 is selected to be 1 Mz and f20 is set at 1.1 MHz.



Equations (1) and (2) can be rewritten as

2TD(f + FI)
rD 10 +F1 (5)

"1 (c + v cos 6) sin e

2wD( f + F2)  (6)

2 = ( - v cos ) sin 20 2 ()

If the right sides of (3) and (5) are equated and the resulting equation

is solved for FI, there is obtained

F1= (2N-1) sin (c + v cos ) - f (7)

Similarly, from (4) and (6), there is obtained

F= (2M-1) sin 0 (c - v cos ) - f20 (8)

By operating the digital frequency synthesizers in the frequency modula-

tion mode, Fl and F2 can be made proportional to voltage inputs to the

synthesizer .

That is

FI =K1 1 (9)

and

F2 = K2 V2 (10)

Furthermore, to obtain an output independent of the speed of sound, it

is necessary to adjust K1 and K2 so that
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KP = K, I2M-1
K2 1  a2N-1 )

Finally, from equations (7) through (11), an equation is evolved which relates

a voltage output, V1 - V2, to the axial fluid velocity v:

(2N-1) sin e cos 6 f10 K20 1
1  2 K 2D K2 K(-

I U

Here the troublesome speed-of-sound variable cancels out and the last

term is merely a dc bias. Equation (12) then represents the ideal behavior

to be attained by the actual flowmeter system.
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DEVELOPMENT OF THE LINEAR FEEDBACK MODEL

Figure 2 is a simplified diagram of one channel of the proposed flowmeter

(appendix G, ref. 1). Notation is that pertaining to the downstream system

which is analyzed in some detail. Figure 3 shows the more detailed block

diagram of the flowmeter (ref. 1, page 57). The "Filter" of figure 2

corresponds to the "LPF" (Low Pass Filter) of figure 3. An analysis is

first made of the simplified system of figure 2, after 
which it is shown

that the system of figure 3 essentially corresponds 
to that of figure 2.

The relationships for the upstream system are easily obtained from the results

of the analysis of the downstream system.

On various occasions, use is made of the following trigonometric

identities:

sin a sin b =1 cos (a - b) - cos (a + b) (I.1)
2 2

cos a cos b = I cos (a - b) + cos (a + b) (1.2)
2 2

The 1/2 term does not explicitly appear in any equations since 
it can

be included as part of a gain constant.

Analysis of Downstream System

For the downstream system (fig. 2), equations which express pertinent

instantaneous time relationships are now restated or developed.

The inputs to the multiplier are the reference wave and the reference

wave delayed in phase by '1, and as (I.1) implies,

Vl = K A sin 2(F 1  f1 0 ) t [KA sin (2(F 1 + f)

= KK A2 cosl -K K A2 cos 2(2F + 210) t -

where K = K'/2m m



If it is assumed that, in passing through the filter, the high frequency

component is completely eliminated, the component of interest would become

2  (13)
V = K K A cos (13)

As shown previously,

27 D(F + f 0 )

1 1 10l
sin 8 (c + v cos V)

It is planned to make the time constant, T, of the low pass filter

about .01 seconds (ref. 1), which implies that the response is down 3 db

at about 16 Hz. Therefore, the output of the filter is a function of the

time variation of the input. That is,

Vf (t) = V [V (t)] (14)
1 l m

Since the maximum frequency of interest is 100 Hz, it is assumed that

any time constants of the amplifier are insignificant. Hence,

V1 = K V (15)
1 a f

and, as stated previously,

F = K V1  (9)

If small fluctuations in c and v bout o static operating point

are assumed, the dynamic relationships can be considered to be equivalent

to the differential relationships. Then from equation (5)

d = . dF + 1 dc + o dv
10F 1 c

10



and with

F1 = F1  v = v and c = c

then

2rD dF + 2rD (F + f ) (c + v cos )-2(-l)dc

d 1l sin e (c + v cos e) 1 sin e s 10  + v
s s

+ 2si (F + fl )(c + v cos 0)-2(-1)(cos O)dv
sin 1s 10 s s

or

20 D 2ITD(F 1s + f 0 )

dl sin (cs + vs cos ) 1 sin 6 (cs + Vs cos e)2

27rD(Fs + f
) cos es 10 dv

sin 8 (c + v cos 68)

If the subscript "d" is used to denote the dynamic component, the

preceding equation can be rewritten as,

2w) 2fD(Fls + fl0 )

d sin (c v cos ) ld sin (c s + v cos )2 d

27rD(Fls + f 10) cos

sin e (c + v cos)2 vd()

Likewise from equation (13)

dV =-K K A (sin )

i m
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which implies V md(t) = -K K A 2(sin ls) d(t) (17)
mid m is id

Also from equations (14), (15), and (9)

V fld(t) = VfldVmd (t)] (18)

V ld(t)= K aV fd(t)  (19)

Fld(t) = K Vld(t) (20)

Now take the Laplace transforms of equations (16) through (20)

2D D(F + f 0)2vD l10)(S)
ld(S) = sin 6(cs + v cos 8) )2 d (S )

2D(Fls + f10 ) Cos 0 d(S) (21a)

sin 0(c5 + v cos )2

or

21D(Fs + f0 )

-2D -(F(s 10 d(S)
-d(S ) = sin (c+ cos ) ldsin (c + v2 (S)

4 s sin 6(cs Vs e)s s

2TrD(FIs + f10 ) cos 6
S s 10d(S) (21b)
sin 0(cs + vs cos 6)2

For the multiplier, the S domain equation for the dynamic voltage output

is

V mid(S) = Km K A (sin ls) (_-ld(S)) (22)
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For the filter,

S) f (S) (23)
fld TS + 1 md

and for the output amplifier,

Sld(S) = Ka Vfld (S) (24)

The S domain equation for the controlling frequency is

Sld(S)= K1 Vld (S) (25)

Equations (21b) through (25) can be represented by the block diagram

shown in figure 4. It is desired to transform the configuration shown in

figure 4 to a configuration of the form shown in figure 9. To do this, the

general block diagram transformations shown in figure 5 are used.

The diagram shown in figure 6 is derived from that shown in figure 4 by

applying transformation T.1 to the blocks in the forward loop and T.3 to the

blocks immediately ahead of the inputs. The diagram shown in figure 7 is

derived from that shown in figure 6 by applying transformation T.2 to the

block to the left of the feedback loop. Finally, the block diagram shown in

figure 8 is derived from that of figure 7 by use of transformation T.l. The

diagram shown in figure 8 has the desired configuration. R in figure 9

corresponds to ;d (S) + (cos e) d(S) in figure 8.

For a negative feedback system represented by the block diagram shown

in figure 9, the relationship between the output C and the input R is

C G R, which implies that
1 + GH
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K K K K. A2(sin 4, )21TD(F_ f )
a-f m 1P ."s~a~mc - is --

sin e(c + v cos 6)2(TS 1)

V (S)s --- (c(S) + (cos 0)vd(S))
KIKaKfK K A2(sin ls)2T D

1 + sin e(c + v cos )(TS + 1)
s s (26a)

or

K fKJK A2 (sin ls) 2D (Fls + f10)

sin 0(cs + v cos e)2

(S) s s (() + (cos e) d(S))
Vld s) KKaK KmKb A2(sin 0s)2TD

TS+1 +
sin e(c + v cos e)

(26b)

The question arises as to what is the sign of sin ls. At present, it

is assumed that the magnitude of the right hand 
term of the denominator of

equation (26a) is to be made >>1. It is shown later that this is a necessary

condition for the desired operation of the-flowmeter. 
Inspection of

equation (26b) reveals that if sin 1s is negative, there would be a pole in

the right hand plane which would result in an unstable 
system. An analysis

of this problem is presented next.

It is assumed that no dynamic fluctuations are 
present but that, for some

reason, 4i is not at the static operating point ls o If 1 were in either

the second or the third quadrant, then cos 01 would be negative. Inspection

of equations (13), (5), (14), (15) and (9) reveals that the output 
of the

multiplier Vml would be negative, as would be Vfl and, therefore, V1 .

A negative V1 would cause F1 to decrease 
which, in turn, would cause

*1 to decrease. Consequently, the system would drive toward the design

static operating condition $1 = (2N -1) , where N is odd. Therefore,

sin ls would be positive. If, on the other hand, 01 were in either 
the

fourth or the first quadrant, then cos 01 would be positive which would

14



cause F1 to increase. Consequently, 1 would increase, and the system

would again drive toward the condition 1 = (2N - 1) , where N is odd.

Therefore, sin 1s would again be positive. If, for some reason, $1

were to exactly equal (2N - 1) 2, where N is even, it seems likely that

very soon some external or internal disturbance 
would occur and the

nulling process would be triggered.

In the remainder of this report, it is assumed that N and M 
(for the

upstream system) are odd.

The static operating point, ls' would not be exactly at (2N - 1)-

because a non zero cos 1 is needed to produce at least a small multiplier

output voltage, Vml, so that the amplifier can maintain the required 
non

zero variable frequency component F1 . An equation is now developed which

relates this difference between 1ls and (2N - 1) 7 to system parameters.

First one must rewrite equations (13), (5), (14), (15), and (9) in terms

of values at the static operating point:

Vmls = KK A2 cos s (27)
mls m~ Is

21TD(F + f 1
2D(F1+ f10 (28)

=1s sin e(c + v cos) (28))
s s

V flS= Vf s (m ) = K V , since static flow conditions are assumed. (29)

Furthermore

Vis = K V (30)
la a fls

and

Fls = K1 Vls (31)

The difference between (2N - 1) Z and $1s can be written

A = (2N - 1) -1 (32a)

15



which implies

s = 2 (2N - 1) - A (32b)

Then from equations (32a) and (28)

2rD Fl 2wD f
33 s 10

= 2 - - sin (c +v cos sin (c + v cos 6)

From equation (32b), cos. =  - 1. - A@ nr o ls = sin A,.

If sin AO1 is expanded in a MacLauren series, there is obtained

cos s = sin A¢I = nl 1 -

Therefore, equation (27) becomes

V =KK A2(A0) (34)
mis m- 3°

From equations (34), (29), (30), and (31)

(AO)
3

Fs = K KaKfKmK A2(A01 +  ° .) (35)

The phase angle, 010, attained by the system at F1  0 is

27D f10 (36)
10 sin 6(c + v os 6)

If equations (35) and (36) are substituted into (33), it becomes

16



2TrD KK KfK K A2

1 a fm 4)
1 ~ (2N - 1) - sin 0(c + v cos e) 1

s s

2'rD KlK KmK A2  ( ) 3

sin (c + v os 31 10

or

2D K K a K KK A
1 sin (c + v cos 8) 2 10

s s

2D K K K K A2
l a fm -

+ sin e(c + v cos 8) 31

or

2D K1KK fK K A2

(2N - 1) sin (Oc + v cos 6) 31

l m 2 21-- 2rD KKK K mK A 27D KlK KfmK A2
1 _ __+ v cos

1 + sin 6(cs + Vs cos) 1+ sin (cs v cos )

or

2KD K K K K A2  3

sin 6(c + v cos 6) 31 (2N - 1) - 10

(N - 2i0
22rD K1K K A KK 2rD KKa KmK A

1+ sin ( s + vs cos ) 1 + sin e(cs + Vs Cos e)

C37a)

17



Comparison of the denominator on the right side of equation (37a) with

that of (26a) reveals that it is 1+ the open loop gain constant, except for

the sin $1s term of the latter equation. Assumne, more specifically,

that the system is designed such that

27 D K K K K K A2

sin 6 (c + V cos) >>l

which implies that the second term on the left hand side

of equation (37a)

S . . t most (2N-1) - = radians.

o ( (37b)
Therefore - 31  + " 23 2D(D KKKK A2

I si 1 a fm
sin e(c + vs COB )

Further, the right hand side of equation (37) is << 1, yielding the

relationship

31
and equation (37b) can be written

I l('1 V 2 < (37c)
Imax 2+ 7D KKaK K K A

sin O(c + vs cos 0)

18



which implies that

'ls = (2N-1) (38a)

sin 1s =  (38b)

Equation (38a) verifies that, for static conditions, the idealized

condition stated by equation (3) will be closely attained.

Simplified expressions for equations (26a) and (26b) can be obtained;

From equations (28) and (38a)

2wD(Fis + fl0) (

s= (2N- 1)
sin e(c5 + v cos e)

which implies

(sin (c 5 + v cos )

(Fls 10) (2N -1) 2rD

(2N - 1) sin O(c + v cos ) (39)

4D

The block diagram obtained by applying equations (38b) and (39) to

figure 8 is shown in figure 10.

Equations (26a) and (26b), which relate system output to inputs,now become

K K KKK A2 ( 2N - 1)w

2(c + v cos e)(TS + 1)

Vld(S) = KA 2  (S) + (cos e)vd(S))
27D KKaKK A2

1+ sin e(cs + v cos e)(TS + 1) (40a)

or

19



K KfKmKKA (2N - 1)

2(c + v cos 0)
s s

Vd(S) = K K K K A2  (S) + (os )vd(S)

2TD KIKKfKKK A
TS + 1 + '

sin 6(c + v cos 8) (40b)

The denominator is of the form

TS + 1 + K = (1 + K) a T 1
1 +K

This shows that the effective time constant of the closed loop

system is reduced by the factor 1 + K, where K is the open loop gain constant.

Analysis of Upstream System

For the upstream system, the analysis makes use of the instantaneous

equations:

2
V m K K A cos 02 (41)

2TD(F2  f 2 0 )

2 sin (c v cos ) (6)

Vf 2 (t) = V (V (t)) (42)

V2 = Vf2  (43)

F2 = 2 V2  (10)

20



The analysis of this upstream system is similar to that of the

downstream system; however, whereas in the downstream system, an increase in

fluid velocity tends to cause a decrease in phase angle, in this upstream

system, an increase in fluid velocity tends to cause an increase in phase

angle. Thus,

2WD F2d(t) 27D(F2s + f20
2d(t) = -2 cd(t)

2d( sin 6(cs - v cos 6) sin (cs - s os 8)

2rD (F2s + f2 0 )(cos 8) (44)
+ vd(t)

sin O(c - v cos 8)2
s s

In the S domain

2D F2d (S) 2D (F2s + f20 )

-T2d(S) = + 2 cd(S)
2d sin 6(c s v cos 0) sin (c - v s cos 6)2

2rD(F2 s + f2 0 )(cos 8)s2 d(S) (45)
sin O(c - v cos 6)2

s s

The other Laplace-transformed dynamic equations are:

Vm2d(S ) = KmK A sin :2s (-2d(S)) (46)

Vf2d (S) = f Vm2 d(S) (47)
TS + 1

V2 d(S)= KVf2d (S) (48)

F2d(S) = K2 V2d(S)  
(49)

Equations (45) through (49) can be put into the block form shown in

figure 11.
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Figure 11, by transformations similar to those used in the downstream

system, assumes the fo ;.U shwL in figure 12.

Also, by analogy with equations (38b) and (39), the following relationships

are used:

sin 2s = 1

sin 
F + f sin - (2M - 1)(c - v cos e)
2s 20 I s s

Then, from the general output/input relationship for a negative feedback system,

K K K K A2(2M - 1) 7Ta m A2(2M (C(S) - (cos ) v (S) )
2(c - v cos 8) (TS + 1)

"2d(S) =  s s (50)S2D K K KfK K A2

2 as m
1 + sin e(c - v cos 6)(TS + 1)

a s

Analysis of Combined Downstream and Upstream Systems

The block diagrams for the two individual systems of figures 10 and

12 can be combined as shown in figure 13. In the feedback block of the

upstream system, K2 has been expressed in terms of K1 by use of equation (11).

From equations (40a) and (50)

K KKK A2(2N - 1 )w
a fm (c (s) + (cos e)v (S)

2(c + v cos e)(TS + 1) d d

Vld(S) - V2d(S) = ( K i A2
2WD ~KK 1fmK A

1 + sin (c + v cos 0)(TS + 1)
a S

K K K K A (2M -l) (a m (C (S) - (cos 6)vd(S))
2(c - v cos 6) (TS +1) ds s (51)

21TD K2K a4 mK A2

1+
sin e(cs - vs cos )(TS + 1)
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Next, it is shown that, if the open loop gain (GH in figure 9) is

> > 1, and, if K1 and K2 are adjusted for the relationship expressed by

equation (11), the ideal output/input relationship expressed by equation 
(12)

is closely attained. If equation (12) which expresses an instantaneous

relationship is rewritten to express a dynamic relationship, there is obtained,

(t) - V(t) = 2N -1 sin 8 cos 0 (52)
ld 2d K 2D d(

Equation (52), then, expresses the relationship between dynamic

voltage output and dynamic fluid velocity that would be obtained by an ideal

system. Equation (12) and therefore, equation (52) assume that K1 and K2

are related in the manner expressed by equation (11).

If the right hand terms in each of the denominator expressions are

> >1,

Vld(S) V 2d(S) 4 D K-i sin ( (S) + (cos 6) Vd(S))
ld(S) 2d' 'ZISD K1  d

(2M- 1) sin 6 (Cd(S) - (cos 6) Vd(S))
4D K2  d

If equation (11) is used for K2

Vld(S)- 2d(S) (2N - ) sin (d(S) + (cos e)d(S) )

(2M - ) sin 6 (S) - (cos e)7d(S))
-DK 2M - 1 d(S)

1 2N - 1

or (S) - d(S) (2N - 1) sin 6 cos 0 v(S)
ld 2d(S) 2D K1  (53)

In the time domain,

Vld(t) - Vd(t) (2N - 1) sin e cos v(t) ()
d 2d 2D K1  d (5)
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As seen by inspection of figure 13 and equation (54), the system out-

put is inversely proportional to the feedback path gain, 4DK1/(2N - 1)sin e.

This, of course, is an inherent disadvantage in the use of negative feedback.

To obtain large open loop gain, and at the same time, adequate output/input

sensitivity, adequate forward path gain is needed. Changes in the static

levels of fluid velocity and sound speed, vs and cs , change the forward path

gain, but high open loop gain reduces this effect.

ANALYSIS OF THE BLOCK DIAGRAM OF THE PROPOSED FLOWMETER

Next, it is shown that the proposed system of figure 3 corresponds

essentially to the simplified system (fig. 2) upon which our analysis

has been based.

For the sake of simplicity, interactions between the upstream receiver

and downstream transmitter and between the downstream receiver and upstream

transmitter are neglected.

In figure 3, the signal outputs are shown at various key points in

the system. Some of these output equations are developed below where it is

felt they might not be easily determined by inspection.

The outputs are denoted by outC7 where "n" represents the number

of the component block shown in figure 3.

Out = K'(K A sin 27flt) (KhK2 A sin [2nf 2t -2 - ]l)

By use of trigometric identity (I.1) and the relationship, K5= K5/2

Out = K5K K3 A2 [cos (2wf2t - - 2rflt)

- cos (2wf2t - 2 - a + 2wflt)]
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or

Out = K5K4 K A2  cos(21T[f 2 - f1 - 2 - a) -cos(2w[fl + f 2 1t - o2 - t)

Similarly

Out = K K K3 A2 [cos(2wf2t - a - 2flt + 1) -cos(2wf2t - a + 27flt -

or

Out =K K K5 K4 K A f2 cos(2[f - l]t - a + ) -cos(2[f 2 + fl]t - a - P1)

and Out is K6 x the (f2 - fl ) term of Out )

Similarly

Out = K 6 K5 A2 cos(2[f 2 - fl]t - a)

Out = KKK 3

ut KK K K A2 cos(2 2- K K 2cos(2[f2 -fl]t-a
0u =5 6 5 4 3 f2 - fl t f 6 5 3 2 1

By use of trigometric identity (1.2) and the relationship, K5 = K/2 ,

Out = 
2KK KK A4  cos(2 [f 2 - ft - - + 2[f2 - flt - a)

+ cos(2w[f 2 - fl]t - a - 2[f 2 -f l]t + a +

or

Out @ = KK K4K A4 {cos(27 . 2[f 2 - ft - 2a) + cos 2

Similarly

Out = KK 3 K K A4 cos(2 '" 2f 2 - fl]t - 2a + 1)+ cos ¢1
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It can be seen from the foregoing equations that, except for constant

terms:

1. Equation (9) holds for both the actual system and the simplified system.

2. The unfiltered part of the output of 2 corresponds to equation

(13).

3. The output of @ corresponds to equation (14).

4. The output of B corresponds to equation (15).

5. Equation (5), of course, holds for both the actual and simplified

Similarly, for the upstream system, equation (10) holds for both the

actual system and the simplified system and

1. The unfiltered part of the output of corresponds to equation (41).

2. The output of corresponds to equation (42).

3. The output of corresponds to equation (43).

4. Equation (6), of course, holds for both the actual and the simplified

systems.

CONCLUDING REaMARO

An analysis of the feedback system used in servoing the transmitting

frequencies of the Panametrics, Inc. dynamic ultrasonic flowmeter has been

made. The analysis is based on the assumption that small fluctuations in the

speed of sound and axial fluid velocity occur about a static operating point

representing a steady-state fluid flow rate.

The analysis reveals that the design concept is essentially sound as

long as the open loop gain can be made >>I. This condition is needed to

cancel out errors due to fluctuations in the speed of sound and to decrease

the flowmeter's effective time constant needed to obtain that frequency

response to at least 100 Hz. For example, an open loop gain of 100 results

in an effective time constant of 10- 4 seconds. Further, adequate forward

gain is needed to obtain the desired output/input sensitivity, and at the

same time, obtain the high open loop gain required for stability. Unfor-

nately, the forward gain varies with variations in the static (steady-state
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flow rate) operating values of fluid velocity and sound speed, vs and c s ,

respectively, but high open loop gain reduces this effect also.

Based on the root locus stability criteria, the flowmeter's servoing

was found to contain only a single pole in the left hand plane and is

inherently stable.

As a result of this analysis, the flowmeter's innovative concept, it is

felt, will be more clearly understood and its ability to measure oscillatory

flows more effectively evaluated.
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Figure 1. Basic flowmeter i ng geometry.



m fl TS + V m 1
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V(t) = Vm[V (t)]
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Figure 2. Simplified operational diagram of flowmeter.



Legcnd

PA Power amp VCO Voltage controlled oscillator

B Buffer amp DBM Double balanced mixer

DC DC amp LPF Lo pass filter

IF IF ap
K62 K

3
K K3 7A4 cos(2".2[f

2 - fl] t -02 -2&) + cos 02,

K K 3 A
2 

coa(2n[f 2 - f l:t -0 co.(2fl + f2 ]t-02 K65K32 cos 2 (f2 - f I t 0]

4
K
3
2A sin(2nf2 t 2) K .afl

K3 A ein 2nflt

IF 1 .F 1+I 10  
f1 *Vfj(al

a @P1,FIV10 I V e

AVCO 1 rnamier

S32A sin 2nflt

A sin Znlr KIt

recive DB LPF V2

V CV

vracsottter Vf2 *Vt 2(V )

6n
2 
24 -)-- 1 ---2KNote 3

122 20 20
L-f --O 5 6

DBI it

K3A sln(2"12 
c -o) tV

Hoes: 2/ K623K6 K3 A
4

cos(2n*22 - il]t -20 + 
l
) + cos 01

(1) Ou -I6K K3 A
2 

cos(2n 2 " l t - a
)  KKKK 3 2 cos 2n( 2 - l

) 
t * + 1]

(2) V . K62K K3 7 A4 co 01 K KK 332 cos(2 -2 1 - + 0) - coe(2mL2 + 1 - - 0)
72"3A2 74 A 2 i 2 1

(3) V2 , K6 2K53KK 3
7 A os 802

Figure 3. Block diagram of flowmeter electronics.
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Figure 4. Block diagram representation of S domain equations for downstream system.
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cd(S)

+ 2rD(FIs + f )  ld(S) K aKfKA 2 sin + 0 s Vid(S)

+ sin (c s + vcos ) 2  TS +

vd(S)
cos e

2n DK 1

sin 8(c + v cos 9)
Figure 6. Block diagram derived from figure 4.

Figure 6. Block diagram derived from figure 4.



cd(S)

S1Id ( S )  Ka K K2 sin s Vid(S)
2nD(F1 s + 2 a K A is

+ - -G sin (cs + s cos 8)

cos

sin 6(c + Vs cos)2

2nD(FIs + f1 0)

2nDK

sin 8(c + Vd cos )

Figure 7. Block diagram derived from figure 6.



Cd(S)

KaKfKK A 2 (sin 9 )2D(F + 10)  VId(S)

sin (c s + v cos ) 2(TS + 1)

cos 8

K 1 (c + v cos 09)

FIs + f10

Figure 8. Downstream system block diagram derived from figure 7.
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Figure 9. Block diagram for a negative feedback 
system.



Cd(S)

KaKfK KA2(2N - 1)T Tld(S)

+ - 2(cs + vs cos 6)(TS 
+ 1)

cos 

(2N - 1)sin 8

Figure 10. Downstream system block diagram derived from figure 8 by use of
relationships sin 0 1 and F + f0 (2N - l)sin G(c + vs )/4D.
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a Figure 11. Block diagram representation of S domain

equations for upstream system.
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2 2(c s v s cos 0)(TS + 1)

S4DK2
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Figure 12. Upstream block diagram derived from figure 11.



Cd(s)
Downstream system

+ c KaK K K K A2(2N - l)rr Vld (S )

-% 2(c s + v s cos e)(TS + 1)

Cos 4 R
4DK

(2N - 1) sin 8

Upstream system --

+ K KaKfKm K A2 (2M- l)n

2(cs cos 9)(TS + 1)

r-I

4DKI

(2N - 1) sin

Figure 13. Block diagram for combined downstream and upstream
systems.


